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On the Interplay Between Fine-tuning and Composition in Transformers

● Phrase-level representations in transformers reflect heavy 

influences of lexical content, and lack evidence of sophisticated 
compositional information (Yu and Ettinger, 2020)

● Will models show better compositionality after fine-tuning on 
tasks that are good candidates for requiring composition?

● We experiment with 2 fine-tuning tasks, and present layer-wise 
analysis of 5 different transformers. We present further analysis 
of the impact of fine-tuning.

INTRODUCTION

Composition
● A fundamental component of language understanding
● Capacity to combine meaning units into larger units
● Composed representation should resemble output of human 

compositional process

COMPOSITION & EVALUATION
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Composition Evaluation (Yu and Ettinger, 2020)
● Capture correspondence of phrase representation with human judgment 

on phrase pair similarity

● Evaluation consists of two types of tasks

○ Similarity correlation: correlate representation cosines with 
human-annotated similarity ratings from BiRD (Asaadi et al 2019)

○ Paraphrase classification: train a MLP classifier to identify paraphrases 
versus non-paraphrases from PPDB (Pavlick et al., 2015) 

● Each test has uncontrolled and controlled variations : latter  constitutes 
model-agnostic schemes to remove cues of word overlap 

IMPACT OF FINE-TUNING

LOCALIZED IMPACTS OF SST

● Select tasks with promise to address composition weakness and reliance on 
word overlap

● Fine-tuned models show limited improvement

○ PAWS-QQP has spurious cues that undermined learning of meaning

○ SST shows small localized benefit, but the improvements do not extend to 
all model

● We predict that phrase-level training with meaning-rich annotations is a 
promising direction for learning composition

TAKEAWAYS

Figure 4: Layer-wise correlation of BERT fine-tuned on phrases of different lengths in SST
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Composition in Pre-trained Transformers (Yu and Ettinger, 2020)

● Models show non-trivial alignment with human judgment, but it 

seems to rely on lexical information
● With lexical overlap controlled, models show severe 

performance drop
● Suggests lack of sophisticated composition beyond word 

content encoding

Paper: https://arxiv.org/pdf/2105.14668.pdf

Code: https://github.com/yulang/fine-tuning-and-composition-in-transformers

Fine-tune on promising  tasks for requiring composition

● Paraphrase Adversaries from Word Scrambling (PAWS) (Zhang et 

al., 2019)

○ Quora Question Pairs subset (PAWS-QQP)

○ Binary classification on sentence pairs with high lexical overlap
● Stanford Sentiment Treebank (Socher et al., 2013)

○ 5-class classification on syntactic phrases of fine-grained 

sentiment labels

○ Hierarchical structures promote composition

Can we improve compositionality via fine-tuning?

FAILURE OF PAWS-QQP

Model Accuracy (%)

BERT 80.13

RoBERTa 90.81

DistilBERT 81.98

XLM-RoBERTa 91.18

XLNet 88.24

Linear CLF 71.34

Table 1: Accuracy of fine-tuned models on PAWS-QQP test set.

A simple linear classifier with relative swapping 
distance as the only input feature

There are also specific discussion, public profile 
debates and project discussions.

There are also public discussion, profile specific 
discussions, and project discussions.

Swapping 
distance = 4

● Tuning on full dataset (mixed phrase lengths) gives the strongest boost

● Among filtered sets, length 2 training yields the highest peak, while length 6 the lowest.
● Training on diverse phrase sizes encourages fine-grained attention to compositionality, while 

training on phrases of similar size to test tasks may have slightly more direct benefit.

Note: “HT” = Head-token, “AP” = Avg-Phrase 

Figure 1:  Correlation on uncontrolled BiRD dataset (phrase-only input)

Figure 2:  Correlation on controlled BiRD dataset (phrase-only input)

Pre-trained PAWS-tuned SST-tuned

Key findings: 

● Fine-tuning consistently improves peak correlations among models in 

uncontrolled tests. Improvements are generally stronger tuning on SST 
than on PAWS

● In controlled tests, PAWS-QQP mostly harms performance, while SST 
shows localized benefits in BERT’s CLS token

Figure 3:  Distribution of positive and negative predictions/labels
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