
2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

978-1-5090-1610-5/16/$31.00 ©2016 IEEE 790

VinaSC: Scalable Autodock Vina with Fine-grained
Scheduling on Heterogeneous Platform

Lang Yu∗‡2, Zhongzhi Luan∗, Xiangzheng Sun†, Zhe Wang†, Hailong Yang∗1
∗Sino-German Joint Software Institute, Beihang University, Beijing, China

†Software & Service Group, Intel China Ltd., Beijing, China
‡Department of Computer Science, University of Chicago, USA

{lang.yu, 07680, hailong.yang}@buaa.edu.cn, {xiangzheng.sun, zhe.wang}@intel.com

Abstract—In this paper we present VinaSC, an improved
version of Autodock Vina, that performs molecular docking
simulation efficiently on large-scale heterogeneous cluster for
massive docking scenario. Both application and platform opti-
mizations are implemented to fully exploit performance potentials
of heterogeneous platforms. Specifically, computation is offloaded
to Intel Many Integrated Core (MIC) using Intel Coprocessor
Offload Infrastructure (COI) to make host CPU and coprocessor
collaborate during docking simulation. Moreover, a dynamic
scheduling framework is implemented in VinaSC using MPI and
Pthread to leverage heterogeneous resources. Our work makes
the following improvements: 1) Compared to original Vina that
only supports single-node CPU platform, VinaSC fully utilizes
computing resources including CPU and MIC coprocessor. 2)
Load unbalance due to the random algorithm and heterogeneous
platform is alleviated. 3) Utilization of vector units on MIC is
significantly improved. 4) VinaSC scales well on heterogeneous
cluster, which enables mass docking using clusters. Experiments
on a cluster with 6 CPU+MIC nodes using PDBBIND dataset
demonstrate that VinaSC outperforms original Vina by more
than 2.3x. In addition, VinaSC maintains scalable performance
speedup as the docking scale increases.

Index Terms—molecular docking, many core architecture, fine-
grained scheduling, heterogeneous resource, load balance

I. INTRODUCTION

By simulating the process of molecular docking, virtual
screening filters out potential drug molecular, which signifi-
cantly reduces the cost and improves the efficiency of drug
discovery. Autodock Vina [1] is the most widely used open
source software in virtual drug screening. Many high perfor-
mance clusters embrace heterogeneous architecture with CPU
and coprocessors such as GPU and MIC [2]. For example,
Tianhe-2 consists of 16,000 nodes and each node contains two
Intel Xeon processors and three Intel Xeon Phi coprocessors
(architecture name MIC). Although incorporating coprocessors
provides more potential parallelism (e.g, with more than 200
cores on Xeon Phi), it imposes difficulties on applications
to adapt and fully utilize available resources [3]. Moreover,
heterogeneous architecture generates another source of load
unbalance due to the varying computing capability.

Autodock Vina is the latest version of Autodock, which
demonstrates its superiority in molecular docking for both

1Corresponding author.
2This work was done while Lang Yu was an undergraduate student of

Beihang University and interning at Intel.

fast speed and high accuracy [4]. Although Vina achieves
satisfying performance, it has several drawbacks impeding
its adoption in large-scale docking simulation. The current
limitations of Vina includes:

• Confined Scalability Each Vina instance can only run
on a single-node, which leads to the reliance on manual
scripts to execute multiple instances in cluster, which is
difficult to optimize the load across multiple nodes. In
addition, the current implementation of Vina is unaware
of the heterogeneous computing resources, leaving the
Xeon Phi coprocessors un-utilized during the simulation.

• Load Imbalance The docking point of each Vina in-
stance is selected randomly, which leads to unbalanced
computation across the Vina instances. The situation is
exacerbated when incorporating the massive computing
resources of Xeon Phi coprocessor, due to the intrinsic
performance heterogeneity between CPU and MIC.

To address the above limitations, we propose VinaSC,
a scalable Vina with fine-grained scheduling on CPU+MIC
architecture. In this paper, we target our work on the second
generation of Xeon Phi Coprocessor (Knights Corner). To fully
exploit the parallelism of Xeon Phi processor while taking
advantage of unicore performance on CPU, we implement our
framework with the offloading mode [5], where MIC serves as
coprocessor and sends computation results back to host CPU.

Specifically, this paper makes the following contributions:

• We incorporate the massive computation resources of
MIC into the docking simulation of Vina. Specifically,
space searching is offloaded to MIC that effectively
improves the performance of docking.

• We implement a dynamic fine-grained scheduling frame-
work, which enables Vina scaling out to a cluster and
achieves load balance within single node and across
different nodes.

• We propose several optimizations to fully exploit the
heterogeneous hardware resources and further accelerates
the docking simulation.

The remainder of the paper is organized as follows. Sec-
tion II describes the background of molecular docking and
Intel MIC architecture. Section III discusses the detailed
design and optimizations of the fine-grained scheduling frame-

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on December 03,2023 at 08:28:02 UTC from IEEE Xplore. Restrictions apply.

791

work. Section IV presents experimental results of VinaSC on
PDBBIND data. Section V summarizes our work.

II. BACKGROUND

We first describe the background of MIC and Autodock
Vina. After that we elaborate the load balance issue when
applying MIC+CPU architecture in docking simulation.

A. Molecular Docking

Molecular docking is the process of searching for the ligand-
receptor pair that could becomes potential drug complex.
Autodock Vina generally conducts docking in a user-specified
space through configure file. User-specified number of docking
points will be randomly selected in that space and then the
corresponding search threads are created to evaluate docking
conformation in given docking point. Search results of differ-
ent threads are merged and refined when all search threads
exit. In this work, we refer one instance of Vina as a job, and
each search thread of a job as a task. The local search method
used by a task enables the search threads run independently,
which provides enough opportunity for parallelism.

B. MIC Architecture

Intel Xeon Phi is the Intel Many Integrated Core
Architecture-based coprocessor that provides many advantages
over traditional CPU and GPU accelerator [6]–[8]. It offers a
high degree of parallelism with multiple small cores (60 70),
that run at a relative low clock rate (usually 1.3 1.5GHz).
Programs that run on Xeon processor can be directly compiled
to MIC. In addition, a simplified Linux OS is re-installed
on MIC. Such support greatly relieves the burden of the
programmers to learn new programming models. Although
applications can run on Xeon Phi natively, domain specific
optimizations are still necessary to fully exploit performance
potential of massive computing resources [9].

C. Load Imbalance

The load imbalance emerges as critical performance issue
when incorporating both CPU and MIC for the docking
simulation. There are two sources load imbalance comes from.
1) Process-level, which refers to imbalance mainly caused by
the difference of spatial structure of ligands and receptors.
Process-level imbalance degrades docking performance within
a single node as well as across multiple nodes. The problem
is exacerbated on MIC due to its lower core performance
compared to CPU. 2) Thread-level, which refers to the perfor-
mance variance between search threads (tasks). Thread-level
imbalance is intrinsic due to the randomness of docking point
selection. In extreme cases, the performance difference could
be more than 30% according to our empirical study.

III. SYSTEM DESIGN AND OPTIMIZATION

In this section, we first give a general description of the
overall framework, and then expand on details about imple-
mentation and scheduling strategy. In addition, several opti-
mizations are proposed to further improve the performance.

Node1

Ligand Database

Node2 Node n
……

output

Host
Xeon
Phi

Job pool

Threads of Job 1

Threads of Job 2

Intra-node

Scheduler

Intra-node

Scheduler

Intra-node

Scheduler

Inter-node
Scheduler

Fig. 1: The Design Overview of VinaSC.

A. Design Overview

The design overview of the fine-grained scheduling frame-
work for scalable Vina is shown in Figure 1. We implement
an inter-node scheduler using MPI. The total ligand library
is scanned by the scheduler that monitors the utilization of
computing nodes and distributes docking jobs accordingly.
Instead of docking for only one pair of molecular in a single
run, we modified Vina to be able to dock multiple pairs. Input
data such as ligands, receptors as well as configuration files are
shared among all computing nodes through NFS. The goal of
scheduling at inter-node level is to assign more jobs to nodes
with stronger computation capability.

Inside a computing node, an intra-node scheduler manages
the job pool of this node. The job pool receives docking jobs
from inter-node scheduler. Similar to the inter-node scheduler,
the intra-node scheduler also monitors the utilization of CPU
and MIC and distributes jobs accordingly. The goal of schedul-
ing at intra-node level is to assign more jobs to CPU, since the
frequency of CPU is nearly twice as MIC. Carefully managing
the load between CPU and MIC is essential to balance the
computation throughout the docking simulation.

B. Pipelined Workflow

Original Vina only docks one pair of molecular in a single
run, which is unsustainable to screen large database with
tens of thousands of moleculars. Moreover, as presented in
section II, thread-level load imbalance negatively affects the
performance. To deal with these problems, we change the
docking process into pipelined workflow, consisting two kinds
of threads, producer and consumer.

Producer threads continually read input files of different
jobs from the scheduler and parse them into self-defined

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on December 03,2023 at 08:28:02 UTC from IEEE Xplore. Restrictions apply.

792

structures. In addition to parsing molecular files, producer
threads prepare data for the conformation search. The prepared
data is encapsulated into the data structure of task, and then
the task is pushed into task queue, which can be concurrently
accessed by consumer threads.

Consumer threads perform conformation search by popping
task from task queue. When a search task is done, the
consumer thread tests whether it is the final task of a particular
job. If it is, the consumer thread executes subsequent stage,
merging output from other search tasks that belong to the
same job. If it is not, the consumer thread fetches another task
from task queue. The design of pipelined workflow eliminates
the load imbalance at thread level by interleaving the search
tasks from different docking jobs. The pipelined workflow is
executed in the same way on both CPU and MIC.

C. Offloading Infrastructure

Considering the advantage of MIC to support native x86
codes, we choose to offload the docking process to MIC,
similar to its execution on the CPU side. In order to manage
the offload execution and corporation with CPU, we design a
send-and-wait mechanism to control and monitor docking on
CPU and MIC using Intel Coprocessor Offload Infrastructure
(COI). CPU is the manager to require jobs from the job pool
and send jobs to MIC. To control the number of jobs sent to
MIC, CPU side keeps a slot queue, representing how many
jobs can be sent to MIC. Every time the scheduler tries to
send a job to MIC, it requires a job from the job pool and
pop a slot from the slot queue. After that, the main docking
process on MIC is the same as on CPU.

To minimize the communication overhead when sending
jobs from CPU to MIC, instead of transferring the actual
input data associated with the job, we send the job index
to MIC since the input data is available to both CPU and
MIC through NFS. To ensure the sequential order of sending
job index and waiting for job completion, we design a two
pipeline mechanism to perform offloading, including one send
pipeline and one wait pipeline. Therefore, the send and wait
operations do not interfere with each other, avoiding the
potential deadlock. Offloading computation to MIC with two-
pipeline implementation effectively coordinates the docking
simulation between host CPU and MIC.

D. Dynamic Scheduling

In this section, we propose the dynamic scheduling mech-
anism to distribute jobs within individual node and across
multiple nodes in order to achieve process-level load balance.
To increase the utilization of fast CPU cores while saturate
slow MIC cores as much as possible, we use the concept of
remaining number of ligands (RNL) to indicate the number
of ligands reserved for CPU. When the number of jobs in the
job pool is less than RNL, the scheduler prevents MIC from
getting new jobs. Note that RNL is dynamically adjusted by
the scheduler during runtime. Every time a job is finished
(whether on CPU or MIC), the scheduler calculates the ratio
of execution time of CPU and MIC job and update the

RNL according to Equation 1. Therefore, RNL reflects the
computation capability of CPU and MIC in real time.

RNL = R×MAX(1,
CPU cores

tasks per ligand
) (1)

where

R =
Docking time on MIC
Docking time on CPU

×0.5+R×0.5 (2)

As shown in Equation 1, RNL is the number of CPU jobs
a cluster can run at one time multiplied by the computing
capability ratio of CPU and MIC (indicated by R). In other
word, RNL reveals the number of jobs CPU can finish during
the time MIC completes one job. It is easy to infer that the
ideal RNL guarantees the computation on MIC always finishes
no later than CPU. In order to eliminate the load fluctuation,
R is updated based on history and latest job execution time
as shown in Equation 2. Taking history data into account is
useful to prevent R from oscillation that leads to unnecessary
idleness of MIC.

In ideal case, RNL can accurately identify jobs that need to
remain for CPU. However, due to the error of measurement,
randomness of the algorithms and different computing com-
plexity between molecular, ideal RNL can hardly be reached.
Therefore, we introduce a constant TUNER in Equation 3
to compensate the inaccuracy. Based on our empirical study,
assigning more jobs than ideal for CPU would not degrade the
performance significantly. Thus we can adjust the TUNER to
determine the actual value of RNL.

RNL = R×MAX(1,
CPU cores

tasks per ligand
)×TUNER (3)

E. Other Optimizations

In addition to the fine-grained scheduling framework, we
implement several other optimizations on VinaSC to further
improve the performance.

1) Input parsing parallelization: We introduce Intel Cilk
Plus to parallelize the process of input parsing. We take the
advantage of clik for to execute loops in parallel. In order to
ensure correctness, we modify shared and local variables to
eliminate data dependency during loop iteration.

2) Vectorization: Vectorization transforms target code from
SISD to SIMD so that it enables manipulation on massive
data simultaneously. We leverage the optimizations from Intel
compiler, which includes auto-vectorization using compile
option -vec-report* as well as annotation pragma ivdep and
vector always to guide compiler vectorization.

IV. EVALUATION

A. Experiment Setup

We use PDBBIND [10], which is a widely used small
molecule database containing over 330,000 molecular as lig-
and. As for receptor, we use 1IEP cancer cell. We randomly
choose ligands from the database as the test dataset. We
evaluate our framework by docking the test dataset with 1IEP.

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on December 03,2023 at 08:28:02 UTC from IEEE Xplore. Restrictions apply.

793

1.52

1.78
1.92

2.07
2.23

0

0.5

1

1.5

2

2.5

1,200 1,800 2,400 3,000 3,600

Sp
ee
du

p

Jobs

Fig. 2: Performance Speedup of VinaSC under different # jobs.

Our experiments are conducted on a cluster with 6 nodes. Each
node consists of one Intel Xeon E5-2697 v2 CPU, one Xeon
Phi 7120A coprocessor and 64GB main memory. The cluster
uses Infiniband TrueScale QDR40 with 40 Gbps bandwidth to
connect each node. The software stack at each node includes
Redhat OS v6.2, Intel parallel studio XE 2015 update 3 and
Intel MPI 4.1.0.24.

B. Speedup

We evaluate the performance of VinaSC on 6 nodes, varying
the total number of docking jobs. We set the TUNER in Equa-
tion 3 to 1.5 in the following experiments. Since the original
Autodock Vina can only perform docking on a single node at
a time, it cannot be used directly as the performance baseline.
Thus, we implement another framework with process-level
scheduler. This scheduler distributes original Vina instances
only on host CPUs among nodes. We use the intuitive process-
scheduler as a baseline to show the performance speedup
achieved by VinaSC.

As shown in Figure 2, VinaSC achieves scalable perfor-
mance speedup when the number of jobs increases from 1,200
to 3,600. We set 12 search threads for each job. The best
performance speedup is achieved by 2.23x compared to the
baseline when the number of jobs reaches 3,600. The reason
for the linear performance scalability of VinaSC is due to
better scheduling decisions for load balance between CPU
and MIC, since the scheduler manipulates more jobs (more
information) to adjust RNL.

C. Correctness

Since we made modifications to original Vina, it is neces-
sary to verify the correctness of docking results. Due to the
randomness of the algorithm, the results of the same simu-
lation varies across runs, which makes it hard for validation.
After consulting domain experts, we set the tolerable variation
to be 5%. Thus, it is acceptable if the affinity result (kcal/mol)
calculated using our framework varies within 5% compared to
original Vina. Since results with higher affinity scores affect

the docking quality significantly, we only verify the top three
docking conformation.

Based on the above criterion, we randomly choose 50
ligands from PDBBIND, docking them with randomly selected
proteins using our framework and original Autodock Vina.
Each molecular pair is docked repeatedly for 10 times. For
each docking pair, the number of search threads is set to 24
(exhaustiveness = 24). Across all experiments, the average
affinity difference is 0.82% and max affinity difference is
less than 4.8%. The results demonstrate the correctness of our
implementation of VinaSC.

V. SUMMARY

In this paper, we propose VinaSC, a fine-grained scheduling
framework to scale out docking simulation in cluster of
heterogeneous computing resources such as CPU and MIC.
Our experimental results demonstrate significant performance
improvement over original Autodock Vina by more than 2.3x.
Moreover, the performance speedup scales linearly when the
number of the docking jobs increases.

VI. ACKNOWLEDGEMENT

This research is supported by the National Natural Science
Foundation of China (Grant No. 61133004, 61502019). We
thank Dr. Kunqian Yu from Shanghai Institute of Materia
Medica, Chinese Academy of Sciences who gives us advice
on biological algorithms and result validation.

REFERENCES

[1] “Autodock Vina Manual,” http://vina.scripps.edu/manual.html.
[2] “Intel Many Integrated Core Architecture,” http://www.intel.com/

content/www/us/en/architecture-and-technology/many-integrated-
core/intel-many-integrated-core-architecture.html.

[3] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. A. Jarvis, “Ex-
ploring simd for molecular dynamics, using intel R© xeon R© processors
and intel R© xeon phi coprocessors,” in Parallel & Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium on. IEEE, 2013,
pp. 1085–1097.

[4] O. Trott and A. J. Olson, “Autodock vina: improving the speed and
accuracy of docking with a new scoring function, efficient optimization,
and multithreading,” Journal of computational chemistry, vol. 31, no. 2,
pp. 455–461, 2010.

[5] C. J. Newburn, S. Dmitriev, R. Narayanaswamy, J. Wiegert, R. Murty,
F. Chinchilla, R. Deodhar, and R. McGuire, “Offload Compiler Runtime
for the Intel R© Xeon Phi Coprocessor,” in Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE
27th International. IEEE, 2013, pp. 1213–1225.

[6] J. Jeffers and J. Reinders, Intel Xeon Phi coprocessor high-performance
programming. Newnes, 2013.

[7] R. Rahman, Intel R© Xeon Phi Coprocessor Architecture and Tools: The
Guide for Application Developers. Apress, 2013.

[8] G. Chrysos, “Intel R© xeon phi coprocessor-the architecture,” Intel
Whitepaper, 2014.

[9] H. Peréz-Sánchez, A. Fassihi, J. M. Cecilia, H. H. Ali, and M. Can-
nataro, “Applications of high performance computing in bioinformatics,
computational biology and computational chemistry,” in International
Conference on Bioinformatics and Biomedical Engineering. Springer,
2015, pp. 527–541.

[10] R. Wang, X. Fang, Y. Lu, and S. Wang, “The pdbbind database:
collection of binding affinities for protein-ligand complexes with known
three-dimensional structures,” Journal of medicinal chemistry, vol. 47,
no. 12, pp. 2977–2980, 2004.

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on December 03,2023 at 08:28:02 UTC from IEEE Xplore. Restrictions apply.

